Repair of double-strand breaks in bacteriophage T4 by a mechanism that involves extensive DNA replication.
نویسندگان
چکیده
We investigated double-strand break (dsb) repair in bacteriophage T4 using a physical assay that involves a plasmid substrate with two inverted DNA segments. A dsb introduced into one repeat during a T4 infection induces efficient dsb repair using the second repeat as a template. This reaction is characterized by the following interesting features. First, the dsb induces a repair reaction that is directly coupled to extensive plasmid replication; the repaired/replicated product is in the form of long plasmid concatemers. Second, repair of the dsb site is frequently associated with exchange of flanking DNA. Third, the repair reaction is absolutely dependent on the products of genes uvsX, uvsY, 32, 46, and 59, which are also required for phage genomic recombination-dependent DNA replication. Fourth, the coupled repair/replication reaction is only partly dependent on endonuclease VII (gp49), suggesting that either another Holliday-junction-cleaving activity or an alternate resolution pathway is active during T4 infections. Because this repair reaction is directly coupled to extensive replication, it cannot be explained by the SZOSTAK et al. model. We present and discuss a model for the coupled repair/replication reaction, called the extensive chromosome replication model for dsb repair.
منابع مشابه
Coordination of DNA ends during double-strand-break repair in bacteriophage T4.
The extensive chromosome replication (ECR) model of double-strand-break repair (DSBR) proposes that each end of a double-strand break (DSB) is repaired independently by initiating extensive semiconservative DNA replication after strand invasion into homologous template DNA. In contrast, several other DSBR models propose that the two ends of a break are repaired in a coordinated manner using a s...
متن کاملTopoisomerase Inhibitors and Types of Them
Objective: In this paper, we have introduced topoisomerase inhibitors, mechanism of action and types of them. DNA topoisomerases are ubiquitous enzymes that catalyze essential enzymes to solve the topological problems accompanying key nuclear processes such as DNA replication, transcription, repair and chromatin assembly by introducing temporary single or double strand breaks in the DNA. Result...
متن کاملTopoisomerase Inhibitors and Types of Them
Objective: In this paper, we have introduced topoisomerase inhibitors, mechanism of action and types of them. DNA topoisomerases are ubiquitous enzymes that catalyze essential enzymes to solve the topological problems accompanying key nuclear processes such as DNA replication, transcription, repair and chromatin assembly by introducing temporary single or double strand breaks in the DNA. Result...
متن کاملThe tight linkage between DNA replication and double-strand break repair in bacteriophage T4.
Double-strand break (DSB) repair and DNA replication are tightly linked in the life cycle of bacteriophage T4. Indeed, the major mode of phage DNA replication depends on recombination proteins and can be stimulated by DSBs. DSB-stimulated DNA replication is dramatically demonstrated when T4 infects cells carrying two plasmids that share homology. A DSB on one plasmid triggered extensive replica...
متن کاملDouble-strand break repair in tandem repeats during bacteriophage T4 infection.
Recombinational repair of double-strand breaks in tandemly repeated sequences often results in the loss of one or more copies of the repeat. The single-strand annealing (SSA) model for repair has been proposed to account for this nonconservative recombination. In this study we present a plasmid-based physical assay that measures SSA during bacteriophage T4 infection and apply this assay to the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 143 4 شماره
صفحات -
تاریخ انتشار 1996